Effect of modulating unfolded state structure on the folding kinetics of the villin headpiece subdomain.
نویسندگان
چکیده
Equilibrium Fourier transform infrared (FTIR) and temperature-jump (T-jump) IR spectroscopic techniques were used to study the thermodynamics and kinetics of the unfolding and folding of the villin headpiece helical subdomain (HP36), a small three-helix protein. A double phenylalanine mutant (HP36 F47L, F51L) that destabilizes the hydrophobic core of this protein also was studied. The double mutant is less stable than wild type (WT) and has been shown to contain less residual secondary structure and tertiary contacts in its unfolded state. The relaxation kinetics after a T-jump perturbation were studied for both HP36 and HP36 F47L, F51L. Both proteins exhibited biphasic relaxation kinetics in response to a T-jump. The folding times for the WT (3.23 micros at 60.2 degrees C) and double phenylalanine mutant (3.01 micros at 49.9 degrees C) at the approximate midpoints of their thermal unfolding transitions were found to be similar. The folding time for the WT was determined to be 3.34 mus at 49.9 degrees C, similar to the folding time of the double phenylalanine mutant at that temperature. The double phenylalanine mutant, however, unfolds faster with an unfolding time of 3.01 micros compared with 6.97 micros for the WT at 49.9 degrees C.
منابع مشابه
A thermostable 35-residue subdomain within villin headpiece.
The actin-bundling protein villin contains, at its extreme C terminus, a compact f-actin binding domain called "headpiece". This 76-amino acid domain from chicken is highly thermostable. Here, we show that the stable folded structure in headpiece is localized to a subdomain formed by the C-terminal 35 residues. The subdomain, denoted HP-35, is monomeric and retains high thermostability, with a ...
متن کاملThe early stage of folding of villin headpiece subdomain observed in a 200-nanosecond fully solvated molecular dynamics simulation.
A new approach in implementing classical molecular dynamics simulation for parallel computers has enabled a simulation to be carried out on a protein with explicit representation of water an order of magnitude longer than previously reported and will soon enable such simulations to be carried into the microsecond time range. We have used this approach to study the folding of the villin headpiec...
متن کاملQuantitative comparison of villin headpiece subdomain simulations and triplet-triplet energy transfer experiments.
As the fastest folding protein, the villin headpiece (HP35) serves as an important bridge between simulation and experimental studies of protein folding. Despite the simplicity of this system, experiments continue to reveal a number of surprises, including structure in the unfolded state and complex equilibrium dynamics near the native state. Using 2.5 ms of molecular dynamics and Markov state ...
متن کاملPeptide models provide evidence for significant structure in the denatured state of a rapidly folding protein: the villin headpiece subdomain.
The villin headpiece subdomain is a cooperatively folded 36-residue, three-alpha-helix protein. The domain is one of the smallest naturally occurring sequences which has been shown to fold. Recent experimental studies have shown that it folds on the 10-micros time scale. Its small size, simple topology, and very rapid folding have made it an attractive target for computational studies of protei...
متن کاملPathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution.
An implementation of classical molecular dynamics on parallel computers of increased efficiency has enabled a simulation of protein folding with explicit representation of water for 1 microsecond, about two orders of magnitude longer than the longest simulation of a protein in water reported to date. Starting with an unfolded state of villin headpiece subdomain, hydrophobic collapse and helix f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 46 شماره
صفحات -
تاریخ انتشار 2005